ro是什么意思| 宠物蛇吃什么| 拉烂屎是什么原因| 怀孕初期要注意什么| 5月1号是什么星座| 三伏天吃什么好| 阿魏酸是什么| 玻尿酸是什么东西| 10年属什么生肖| 斗战胜佛是什么意思| ga是什么牌子| 肛门出血是什么原因| 普渡众生是什么意思| 灰指甲是什么| 头晕为什么做眼震检查| 根是什么生肖| 东倒西歪的动物是什么生肖| 什么水果热量低| 酉鬼念什么| 醉代表什么生肖| 烩是什么意思| 尿检弱阳性是什么意思| 窦骁父母是干什么的| 酸麻胀痛痒各代表什么| 大熊猫生活在什么地方| 姓氏是什么意思| 梦见做被子什么意思| 黄褐斑是什么引起的| 肛瘘是什么症状| 农历八月是什么月| 吃榴莲不能吃什么东西| 做面条用什么面粉| 噤若寒蝉是什么意思| 附件炎吃什么药最好| 毛新宇什么级别| 莫言是什么意思| 大红袍是什么茶| 玉米热量高为什么还减肥| 眼睛干涩吃什么食物好| 梦见什么是怀孕的征兆| 生理期为什么会肚子疼| 办理结婚证需要什么材料| 出脚汗是什么原因| 百合是什么植物| 今年二十岁属什么生肖| 天人合一是什么意思| 孕期头晕是什么原因| 海龟是什么动物| 什么是买手店| 属猪的和什么属相最配| 鸭肫是什么部位| 外阴皮肤痒是什么原因| 乳房硬块疼是什么原因| 拉屎很臭是什么原因| 术后改变是什么意思| abr是什么意思| 伏特加是什么酒| 每天吃一根黄瓜有什么好处| 绷不住了是什么意思| 体检前一天晚上吃什么| 什么土方治咳嗽最有效| 想吃肉是身体缺什么| 腱鞘炎什么症状| 汽车拉缸有什么现象| 五行中什么生水| 载脂蛋白b偏低是什么意思| 灵芝对身体有什么好处| 乙肝抗体阴性什么意思| 治疗梅毒用什么药最好| 补钙吃什么最好| 掉头发去医院看什么科| 眼底充血用什么眼药水| 118号是什么星座| 士加一笔是什么字| 免冠照片是什么意思| 酸枣仁配什么治疗失眠| 草莓印是什么意思| 什么齿| 一什么凳子| 什么花不能浇硫酸亚铁| bonnie是什么意思| 过劳肥是什么意思| 拍肺片挂什么科| 黄瓜敷脸有什么功效| 耳朵痒是什么预兆| 宫颈醋酸白色上皮是什么病变| 很黄很暴力是什么意思| 陈旧性心梗是什么意思| 手指发麻是什么原因引起的| 进字五行属什么| 摩羯座女和什么座最配| 故宫什么时候闭馆| 飞机托运不能带什么| 病原体是什么| 粉尘螨是什么东西| 日柱金舆是什么意思| 吃槟榔有什么好处和坏处| 驾校体检都检查什么| 吃葵花籽有什么好处和坏处吗| 高就什么意思| 焦虑症是什么病| ysl是什么牌子| 陈旧性骨折是什么意思| 孕吐是什么感觉| 肝郁脾虚是什么意思| 床头朝向有什么讲究| 桑榆是什么意思| 生肖鸡和什么生肖最配| 胃有幽门螺旋杆菌是什么症状| 女性性高潮是什么感觉| 但闻人语响的但是什么意思| 2月10号是什么星座| 尿蛋白高吃什么食物好| 今年七夕节是什么时候| 头眩晕吃什么药| 精子是什么样的| 降血脂吃什么药| 今年26岁属什么生肖| 属鼠男和什么属相最配| 为什么叫丁克| 什么是绿色食品| 大象吃什么| 肾虚用什么补最好| 娘娘命是什么样的命| 什么是有机物什么是无机物| 四不像是指什么动物| 龋读什么| 什么是压缩性骨折| 什么肉是发物| 4月27号是什么星座| 空调健康模式是什么意思| original是什么牌子| 当归是什么| 什么什么不同| 8月8是什么星座| 骨髓抑制什么意思| 情何以堪 什么意思| 什么而什么见| 肉沫炒什么好吃| 眼睛红吃什么药| 光纤和宽带有什么区别| 恨铁不成钢是什么意思| 钧五行属什么| 娇喘什么意思| 十字架代表什么| 什么程度才需要做胃镜| 为什么同房后小腹隐隐作痛| 什么叫做洗钱| 办电话卡需要什么| 什么的温度| 检查怀孕挂什么科| 12月出生是什么星座| 为什么会长息肉| 水可以变成什么| 技校是什么| 体液是指什么| 痛风看什么科| 自字五行属什么| 重返20岁韩国版叫什么| 筋膜刀是什么| tpp是什么意思| 高高的什么| 为什么会有黑眼圈| 测怀孕的试纸叫什么| 真丝乔其纱是什么面料| 抗环瓜氨酸肽抗体高是什么意思| 甲减有什么症状| 无功无过是什么意思| 眼镜轴向是什么意思| 吃什么食物能提高免疫力| 温文尔雅是什么意思| pa是什么单位| 中图分类号是什么| 三角巾是什么| 术后血压低什么原因| 得不偿失是什么意思| 皮肤黑适合穿什么颜色的衣服| 二级建造师什么时候出成绩| 课程是什么| 杏仁吃了有什么好处| 月经量少是什么原因| 睡觉手麻是什么原因| 软化耳屎的药水叫什么| 议论纷纷是什么意思| 孟子名什么| 淋巴是什么引起的| 凉粉是什么材料做的| 牛拉稀用什么药最快| 左手臂麻木是什么征兆| 为什么辰不能见亥| 做腹腔镜手术后需要注意什么| 宫腔分离是什么意思| 佐餐是什么意思| 长期失眠看什么科最好| 甾体是什么意思| 子宫前置是什么意思| 瘦肉精是什么| 胃酸过多吃点什么食物比较好| 检查头部挂什么科室| 鼻子老是出血是什么原因| 心衰吃什么食物好| 丁丁是什么意思| 顺字五行属什么| 经常流鼻血是什么病的前兆| 金银花什么时候采摘最好| 肥肠炒什么菜好吃| 早上九点到十点是什么时辰| 帽子的英文是什么| 吃相难看是什么意思| 合肥什么时候出梅| 负罪感什么意思| 铃字五行属什么| 高铁为什么没有e座| 什么是甲状腺| 手关节疼痛是什么原因| 有胆结石的人不能吃什么东西| 姐妹是什么意思| 有恃无恐什么意思啊| xxx是什么意思| 摩羯座和什么座最配对| 鼻头发红是什么原因| 孤独症是什么| 什么方法不掉头发| 笃行是什么意思| 鼻梁有痣代表什么| 泄泻什么意思| 木耳和什么不能一起吃| 晨字属于五行属什么| 小囊肿是什么病严重吗| 口爆什么意思| 代价是什么意思| 绞丝旁一个奇念什么| 潘字五行属什么| 凉皮用什么面粉| 智齿为什么会长出来| 别车是什么意思| 淋巴是什么东西| 阳刃是什么意思| 肝脏多发囊肿什么意思| 胸膜炎是什么病| 梗概什么意思| 胃寒吃什么药最有效| 大脖子病有什么症状| 子宫内膜双层什么意思| 内含是什么意思| 喝什么茶降血压最好最快| hazzys是什么牌子| 郑州有什么好玩的| 什么是个体工商户| 头发需要什么营养| 牙齿里面疼是什么原因| 传染病四项挂什么科| 妈祖叫什么名字| 喝酒拉肚子吃什么药| 卫冕冠军是什么意思| 肝异常一般是什么情况| 山东特产是什么生肖| 减肥期间吃什么水果好| 湿疹为什么晚上特别痒| 双性人是什么意思| 不加热血清反应素试验是什么| 热裤是什么裤子| 切什么意思| 什么桥下没有水脑筋急转弯| 百度

三亚七届人大四次会议闭幕 阿东当选三亚市长

百度 例如,中央第十一巡视组要求陕西深入贯彻习近平总书记系列重要讲话精神,切实把习近平总书记视察陕西提出的“追赶超越”、“五个扎实”和低调务实要求落到实处;要求云南切实把习近平总书记考察云南时提出的“三个定位”“五个着力”要求落到实处。

In mathematics, computable numbers are the real numbers that can be computed to within any desired precision by a finite, terminating algorithm. They are also known as the recursive numbers,[1] effective numbers,[2] computable reals,[3] or recursive reals.[4] The concept of a computable real number was introduced by émile Borel in 1912, using the intuitive notion of computability available at the time.[5]

π can be computed to arbitrary precision, while almost every real number is not computable.

Equivalent definitions can be given using μ-recursive functions, Turing machines, or λ-calculus as the formal representation of algorithms. The computable numbers form a real closed field and can be used in the place of real numbers for many, but not all, mathematical purposes.[citation needed]

Informal definition

edit

In the following, Marvin Minsky defines the numbers to be computed in a manner similar to those defined by Alan Turing in 1936;[6] i.e., as "sequences of digits interpreted as decimal fractions" between 0 and 1:[7]

A computable number [is] one for which there is a Turing machine which, given n on its initial tape, terminates with the nth digit of that number [encoded on its tape].

The key notions in the definition are (1) that some n is specified at the start, (2) for any n the computation only takes a finite number of steps, after which the machine produces the desired output and terminates.

An alternate form of (2) – the machine successively prints all n of the digits on its tape, halting after printing the nth – emphasizes Minsky's observation: (3) That by use of a Turing machine, a finite definition – in the form of the machine's state table – is being used to define what is a potentially infinite string of decimal digits.

This is however not the modern definition which only requires the result be accurate to within any given accuracy. The informal definition above is subject to a rounding problem called the table-maker's dilemma whereas the modern definition is not.

Formal definition

edit

A real number a is computable if it can be approximated by some computable function ? in the following manner: given any positive integer n, the function produces an integer f(n) such that:

?

A complex number is called computable if its real and imaginary parts are computable.

Equivalent definitions

edit

There are two similar definitions that are equivalent:

  • There exists a computable function which, given any positive rational error bound ?, produces a rational number r such that ?
  • There is a computable sequence of rational numbers ? converging to ? such that ? for each i.

There is another equivalent definition of computable numbers via computable Dedekind cuts. A computable Dedekind cut is a computable function ? which when provided with a rational number ? as input returns ? or ?, satisfying the following conditions:

?
?
?
?

An example is given by a program D that defines the cube root of 3. Assuming ? this is defined by:

?
?

A real number is computable if and only if there is a computable Dedekind cut D corresponding to it. The function D is unique for each computable number (although of course two different programs may provide the same function).

Properties

edit

Not computably enumerable

edit

Assigning a G?del number to each Turing machine definition produces a subset ? of the natural numbers corresponding to the computable numbers and identifies a surjection from ? to the computable numbers. There are only countably many Turing machines, showing that the computable numbers are subcountable. The set ? of these G?del numbers, however, is not computably enumerable (and consequently, neither are subsets of ? that are defined in terms of it). This is because there is no algorithm to determine which G?del numbers correspond to Turing machines that produce computable reals. In order to produce a computable real, a Turing machine must compute a total function, but the corresponding decision problem is in Turing degree 0′′. Consequently, there is no surjective computable function from the natural numbers to the set ? of machines representing computable reals, and Cantor's diagonal argument cannot be used constructively to demonstrate uncountably many of them.

While the set of real numbers is uncountable, the set of computable numbers is classically countable and thus almost all real numbers are not computable. Here, for any given computable number ? the well ordering principle provides that there is a minimal element in ? which corresponds to ?, and therefore there exists a subset consisting of the minimal elements, on which the map is a bijection. The inverse of this bijection is an injection into the natural numbers of the computable numbers, proving that they are countable. But, again, this subset is not computable, even though the computable reals are themselves ordered.

Properties as a field

edit

The arithmetical operations on computable numbers are themselves computable in the sense that whenever real numbers a and b are computable then the following real numbers are also computable: a + b, a - b, ab, and a/b if b is nonzero. These operations are actually uniformly computable; for example, there is a Turing machine which on input (A,B,?) produces output r, where A is the description of a Turing machine approximating a, B is the description of a Turing machine approximating b, and r is an ? approximation of a + b.

The fact that computable real numbers form a field was first proved by Henry Gordon Rice in 1954.[8]

Computable reals however do not form a computable field, because the definition of a computable field requires effective equality.

Non-computability of the ordering

edit

The order relation on the computable numbers is not computable. Let A be the description of a Turing machine approximating the number ?. Then there is no Turing machine which on input A outputs "YES" if ? and "NO" if ? To see why, suppose the machine described by A keeps outputting 0 as ? approximations. It is not clear how long to wait before deciding that the machine will never output an approximation which forces a to be positive. Thus the machine will eventually have to guess that the number will equal 0, in order to produce an output; the sequence may later become different from 0. This idea can be used to show that the machine is incorrect on some sequences if it computes a total function. A similar problem occurs when the computable reals are represented as Dedekind cuts. The same holds for the equality relation: the equality test is not computable.

While the full order relation is not computable, the restriction of it to pairs of unequal numbers is computable. That is, there is a program that takes as input two Turing machines A and B approximating numbers ? and ?, where ?, and outputs whether ? or ? It is sufficient to use ?-approximations where ? so by taking increasingly small ? (approaching 0), one eventually can decide whether ? or ?

Other properties

edit

The computable real numbers do not share all the properties of the real numbers used in analysis. For example, the least upper bound of a bounded increasing computable sequence of computable real numbers need not be a computable real number.[9] A sequence with this property is known as a Specker sequence, as the first construction is due to Ernst Specker in 1949.[10] Despite the existence of counterexamples such as these, parts of calculus and real analysis can be developed in the field of computable numbers, leading to the study of computable analysis.

The set of computable real numbers (as well as every countable, densely ordered subset of computable reals without ends) is order-isomorphic to the set of rational numbers.

Non-computable numbers

edit

Every computable number is arithmetically definable, but not vice versa. There are many arithmetically definable, non-computable real numbers, including:

Both of these examples in fact define an infinite set of definable, uncomputable numbers, one for each universal Turing machine. A real number is computable if and only if the set of natural numbers it represents (when written in binary and viewed as a characteristic function) is computable.

Digit strings and the Cantor and Baire spaces

edit

Turing's original paper defined computable numbers as follows:

A real number is computable if its digit sequence can be produced by some algorithm or Turing machine. The algorithm takes an integer ? as input and produces the ?-th digit of the real number's decimal expansion as output.

(The decimal expansion of a only refers to the digits following the decimal point.)

Turing was aware that this definition is equivalent to the ?-approximation definition given above. The argument proceeds as follows: if a number is computable in the Turing sense, then it is also computable in the ? sense: if ?, then the first n digits of the decimal expansion for a provide an ? approximation of a. For the converse, we pick an ? computable real number a and generate increasingly precise approximations until the nth digit after the decimal point is certain. This always generates a decimal expansion equal to a but it may improperly end in an infinite sequence of 9's in which case it must have a finite (and thus computable) proper decimal expansion.

Unless certain topological properties of the real numbers are relevant, it is often more convenient to deal with elements of ? (total 0,1 valued functions) instead of reals numbers in ?. The members of ? can be identified with binary decimal expansions, but since the decimal expansions ? and ? denote the same real number, the interval ? can only be bijectively (and homeomorphically under the subset topology) identified with the subset of ? not ending in all 1's.

Note that this property of decimal expansions means that it is impossible to effectively identify the computable real numbers defined in terms of a decimal expansion and those defined in the ? approximation sense. Hirst has shown that there is no algorithm which takes as input the description of a Turing machine which produces ? approximations for the computable number a, and produces as output a Turing machine which enumerates the digits of a in the sense of Turing's definition.[11] Similarly, it means that the arithmetic operations on the computable reals are not effective on their decimal representations as when adding decimal numbers. In order to produce one digit, it may be necessary to look arbitrarily far to the right to determine if there is a carry to the current location. This lack of uniformity is one reason why the contemporary definition of computable numbers uses ? approximations rather than decimal expansions.

However, from a computability theoretic or measure theoretic perspective, the two structures ? and ? are essentially identical. Thus, computability theorists often refer to members of ? as reals. While ? is totally disconnected, for questions about ? classes or randomness it is easier to work in ?.

Elements of ? are sometimes called reals as well and though containing a homeomorphic image of ?, ? isn't even locally compact (in addition to being totally disconnected). This leads to genuine differences in the computational properties. For instance the ? satisfying ?, with ? quantifier free, must be computable while the unique ? satisfying a universal formula may have an arbitrarily high position in the hyperarithmetic hierarchy.

Use in place of the reals

edit

The computable numbers include the specific real numbers which appear in practice, including all real algebraic numbers, as well as e, π, and many other transcendental numbers. Though the computable reals exhaust those reals we can calculate or approximate, the assumption that all reals are computable leads to substantially different conclusions about the real numbers. The question naturally arises of whether it is possible to dispose of the full set of reals and use computable numbers for all of mathematics. This idea is appealing from a constructivist point of view, and has been pursued by the Russian school of constructive mathematics.[12]

To actually develop analysis over computable numbers, some care must be taken. For example, if one uses the classical definition of a sequence, the set of computable numbers is not closed under the basic operation of taking the supremum of a bounded sequence (for example, consider a Specker sequence, see the section above). This difficulty is addressed by considering only sequences which have a computable modulus of convergence. The resulting mathematical theory is called computable analysis.

Implementations of exact arithmetic

edit

Computer packages representing real numbers as programs computing approximations have been proposed as early as 1985, under the name "exact arithmetic".[13] Modern examples include the CoRN library (Coq),[14] and the RealLib package (C++).[15] A related line of work is based on taking a real RAM program and running it with rational or floating-point numbers of sufficient precision, such as the iRRAM package.[16]

See also

edit

Notes

edit
  1. ^ Mazur, Stanis?aw (1963). Grzegorczyk, Andrzej; Rasiowa, Helena (eds.). Computable analysis. Rozprawy Matematyczne. Vol.?33. Institute of Mathematics of the Polish Academy of Sciences. p.?4.
  2. ^ van der Hoeven (2006).
  3. ^ Pour-El, Marian Boykan; Richards, Ian (1983). "Noncomputability in analysis and physics: a complete determination of the class of noncomputable linear operators". Advances in Mathematics. 48 (1): 44–74. doi:10.1016/0001-8708(83)90004-X. MR?0697614.
  4. ^ Rogers, Hartley, Jr. (1959). "The present theory of Turing machine computability". Journal of the Society for Industrial and Applied Mathematics. 7: 114–130. doi:10.1137/0107009. MR?0099923.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ P. Odifreddi, Classical Recursion Theory (1989), p.8. North-Holland, 0-444-87295-7
  6. ^ Turing (1936).
  7. ^ Minsky (1967).
  8. ^ Rice (1954).
  9. ^ Bridges & Richman (1987), p.?58.
  10. ^ Specker (1949).
  11. ^ Hirst (2007).
  12. ^ Kushner, Boris A. (2006). "The constructive mathematics of A. A. Markov". The American Mathematical Monthly. 113 (6): 559–566. doi:10.2307/27641983. JSTOR?27641983. MR?2231143.
  13. ^ Boehm, Hans-J.; Cartwright, Robert; Riggle, Mark; O'Donnell, Michael J. (8 August 1986). "Exact real arithmetic: A case study in higher order programming" (PDF). Proceedings of the 1986 ACM conference on LISP and functional programming - LFP '86. pp.?162–173. doi:10.1145/319838.319860. ISBN?0897912004. S2CID?12934546. Archived (PDF) from the original on 2025-08-14.
  14. ^ O’Connor, Russell (2008). "Certified Exact Transcendental Real Number Computation in Coq". Theorem Proving in Higher Order Logics. Lecture Notes in Computer Science. Vol.?5170. pp.?246–261. arXiv:0805.2438. doi:10.1007/978-3-540-71067-7_21. ISBN?978-3-540-71065-3. S2CID?17959745.
  15. ^ Lambov (2015).
  16. ^ Gowland, Paul; Lester, David (2001). "A Survey of Exact Arithmetic Implementations" (PDF). Computability and Complexity in Analysis. Lecture Notes in Computer Science. Vol.?2064. Springer. pp.?30–47. doi:10.1007/3-540-45335-0_3. ISBN?978-3-540-42197-9. Archived (PDF) from the original on 2025-08-14.

References

edit

Further reading

edit
预防心肌梗塞吃什么药最好 蛋白粉有什么功效 头晕目眩是什么病的征兆 谷氨酸钠是什么添加剂 反贪局局长是什么级别
怀孕不到一个月有什么症状 小产什么意思 什么的马 百合有什么功效和作用 悠哉悠哉是什么意思
子宫内膜厚吃什么食物好 湿疹怎么治用什么药膏 爱是个什么东西 血小板异常是什么原因 为情所困是什么意思
厉兵秣马什么意思 前列腺液是什么 y什么意思 乙肝1245阳性什么意思 拍身份证照片穿什么颜色衣服好看
结账是什么意思hcv7jop9ns2r.cn 胆红素高吃什么食物能降得快helloaicloud.com a2是什么材质imcecn.com 5月15日是什么星座wuhaiwuya.com 西红柿什么时候成熟hcv9jop2ns0r.cn
侄女叫我什么hcv7jop5ns0r.cn 什么是脑梗塞hcv8jop5ns4r.cn 1998年属虎是什么命hcv8jop7ns2r.cn 98年什么命hcv8jop8ns0r.cn 舒张压偏低是什么原因hcv9jop3ns4r.cn
手指甲发白是什么原因hcv8jop4ns0r.cn 四肢麻木是什么原因引起的hcv8jop0ns6r.cn 甲状腺球蛋白低说明什么sanhestory.com 尿的是白色米汤是什么病hcv8jop5ns0r.cn 引产是什么意思hcv8jop2ns5r.cn
绿心黑豆有什么功效hcv9jop8ns2r.cn 气血两虚吃什么药hcv8jop0ns3r.cn 吃什么容易长胖hcv9jop7ns5r.cn 肝内低密度灶是什么意思weuuu.com 920是什么意思hcv9jop4ns6r.cn
百度